Hi All,
Please find the complete Sentimental Analysis program
trainingdata.csv
i am fine,neutral
its great,positive
he is good,positive
so bad,negative
you are waste,negative
testdata.csv
1,raj,i am fine
2,manu,he is great
3,Raji,it is bad
------------------------------------------------------------------------------------------------------------------------
Please find the complete Sentimental Analysis program
trainingdata.csv
i am fine,neutral
its great,positive
he is good,positive
so bad,negative
you are waste,negative
testdata.csv
1,raj,i am fine
2,manu,he is great
3,Raji,it is bad
------------------------------------------------------------------------------------------------------------------------
from nltk import NaiveBayesClassifier as nbc
from nltk.tokenize import word_tokenize
from itertools import chain
import csv
with open('trainingdata.csv','r') as csvinput:
reader=csv.reader(csvinput,delimiter=",")
rownum = 0
training_data = []
for row in reader:
training_data.append (row)
rownum += 1
vocabulary = set(chain(*[word_tokenize(i[0].lower()) for i in training_data]))
feature_set = [({i:(i in word_tokenize(sentence.lower())) for i in vocabulary},tag) for sentence, tag in training_data]
classifier = nbc.train(feature_set)
with open('testdata.csv','r') as csvinput:
with open('data.csv', 'w') as csvoutput:
writer = csv.writer(csvoutput, lineterminator='\n')
reader1 = csv.reader(csvinput)
all = []
row = next(reader1)
for row in reader1:
test_sentence = row[2]
featurized_test_sentence = {i:(i in word_tokenize(test_sentence.lower())) for i in vocabulary}
print ("test_sent:",test_sentence)
print ("tag:",classifier.classify(featurized_test_sentence))
row.append(classifier.classify(featurized_test_sentence))
all.append(row)
writer.writerows(all)
No comments:
Post a Comment