Hi all,
Please see the code.
import matplotlib.pyplot as plt
import numpy as np
# Example data (replace this with your actual data)
algorithms = ['KNN', 'ANN', 'Decision Tree', 'Ada Boost', 'Random forest', 'Naive Bayes', 'Log Regression']
test_accuracies = [0.85, 0.92, 0.78, 0.88, 0.95, 0.89, 0.91]
train_accuracies = [0.95, 0.97, 0.88, 0.93, 0.98, 0.92, 0.96]
# Set up bar positions
bar_width = 0.35
index = np.arange(len(algorithms))
# Create bar chart
fig, ax = plt.subplots()
bar1 = ax.bar(index, test_accuracies, bar_width, label='Test Accuracy')
bar2 = ax.bar(index + bar_width, train_accuracies, bar_width, label='Train Accuracy')
# Add labels, title, and legend
ax.set_xlabel('Machine Learning Algorithms')
ax.set_ylabel('Accuracy')
ax.set_title('Test and Train Accuracies of Machine Learning Algorithms')
ax.set_xticks(index + bar_width / 2)
ax.set_xticklabels(algorithms)
ax.legend()
# Show the plot
plt.show()